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ABSTRACT

The Hugoniot relations, which express conservation of mass, momentum,
and energy across a discontinuity, are derived. The relations are applied
to a perfect gas for illustration, and graphical methods of solving shock

problems are presented.
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SHOCK HYDRODYNAMICS
Mark L. Wilkins

Lawrence Radiation Laboratory, University of California

Livermore, California

February 19, 1962

INTRODUCTION

This article is divided into three sections that are not necessarily
dependent upon one another. The first is the derivation of the Hugoniot
relations which express conservation of mass, momentum, and energy across
a discontinuity. The second is the application of these relations to a perfect
gas, and the third is the solution of shock problems by graphical methods.

The source of this material is to be found in Hugoniot's original paper
in the Journal de L'Ecole Polytechnique, 1889. The method of solving shock
problems graphically was first shown to me by Alan Kaufman.

In this analysis a shock is a compression wave.witl'i‘an infinite pressure
gradient. The shock width is small, so a shock wave can be replaced by a
surface across which the pressure, density, material velocity, and internal
energy change discontinuously.

The equations of state used are in the form of pressure as a function of
volume and internal energy. It is convenient to use relative volume units, or
the ratio of the true volume to its original volume. An equivalent ratio is the

ratio of the original density to the present density.

I. DERIVATION OF HUGONIOT RELATIONS

Given a fluid in an initial state EO, Pg’ Po, and U0 representing
energy, density, pressure, and material velocity, respectively. Consider a
shock with velocity S (with respect to the gas velocity in front) starting from
the end and traveling through the fluid, changing the state from EO, Pg’ PO’
U0 to El’ Py Pl’ Ul' In a time t a length L = St will have been swept out
(Fig. la). The velocity of the rear surface relative to the fluid is (Ul - UO);
therefore the rear surface will have been displaced (U1 - Uo)t during the

time the shock has traveled the length L = St (Fig. 1b).
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Shock )
front

Displaced rear
surface

MUL-16707 .

- (U~ Ug) t —

Fig. 1. Portion of fluid of length L in (a) initial state, .
just as shock front strikes, and (b) final state, just after
shock front has swept through.
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1. Conservation of Mass

For the length of material being considered, conservation of mass
requires the mass before and after the shock has passed to be the same. The

cross section is considered to be unity.
Stpo = [St - (U1 - UO)t] Py
Spg = Spy - (U - Ugleys

S{pg = py) = ~(U; - Uplpy,

(U) - Upley  (U) - UV

S = = (I.1)
P1 " Py Vo - Yy
where
P
v, o=,
1 pl
P
v =0
0~ By

2. Conservation of Momentum

Conservation of momentum for the length L requires that the net

force X time equal the change in momentum.

LU

(P) - Pylt = poLU; - pyLU,

pOStUl - pOStUO,
P, - Py = pS(U, - Uy). (I.2)

Substituting (Ul - UO) from equation (I.1) we get

v - P
s =0 G—l——vﬂ‘> . (1.2a)
Po \"0 ~

*Here the volumes are referred to the density p_ , making the relative
volume V, equal to 1. V_, is carried through the €quations, even though it is
1, to describe the general case where the volumes are referred to a reference
density (pref\), that is not the density Po ahead of the shock. In this case we

would have "V, = Pref/pO and V, = pref/pl'
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Using equations (I.1) and (I.2) to eliminate S we get the very useful

relation

VOpO<U1 - UO>2 = (P, - PV, - V). (1.2b)

3. Conservation of Energy

Conservation of energy requires that the net work on the mass equal the

change in kinetic and internal energy.

- 1 2 2
(P U, - PU)t = Lpo[a (Ul - U, ) +E| - EOJ,

where E1 and EO represent internal energy per unit mass.

= 1 - -
P U, - P,U, = Sp[3(U, + Uo)(U, U )] + SpplEy - Egl
(P, - P,)
- 1 U B -
=T, -0, B, + v, - )]

U; - Uy
7o) Fr FoleoVor

from equations (I.1) and (I.2).

U, -U

1 1~ Yo )
P U, - PyU, = 3(P) - PolU,; + Tp) + VooV, (E; - EglpgVyr

P, + P, U, - U,
——— (U} - Tyl = PR (E) - Egleg Vo

P, + P,
(E) - EglpgVy = —5— (Vo - Vi)

or, including pOV0 in the energy units

P+ P
E -E =40 (1.3)

1" B =z Vo - Vy)
where E = pOVOE (or E is in units of the reference density).

Equations (I.1), (I.2), and (I.3) are the Hugoniot relations expressing

conservation of mass, momentum, and energy.
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4. Eliminating Energy Dependence

For a given equation of state P = P(V, E) the energy dependence may
be eliminated by the third Hugoniot equation. This gives the Hugoniot or
pressure-volume points that may be reached by a shock starting from a

reference state (Fig. 2).

Hugoniot

Adiaiaat /

-V
v
2 1 MUL-16708

Fig. 2. P vs. V for a given equation of state.

For small V2 - V1 = dv, we have %(P1 + PZ) ~ P, and E, - E, =dE

= P dv, or the adiabat and the Hugoniot coincide.
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II. APPLYING THE HUGONIOT RELATIONS TO A PERFECT GAS

1. Propagating a Uniform Shock into a Perfect Gas at Rest

- (Y a 1) B
" V. MUL-16709

Fig. 3. Propagation of a uniform shock into a perfect gas at rest.

Equation of state:

Given a column of gas at rest, at one end a piston is suddenly given
the velocity U which is maintained constant. A shock S travels down the
column changing the gas from the state subscript zero to subscript one. We

wish to find the new state variables and the shock speed S.

pl - PO = pOUS (Second Hugoniot equation), (II.1)
U =3(1 - Vl) (First Hugoniot equation), (II.2)
P =P (v +1) - Vl(Y - 1) (Third Hugoniot equation (I1.3)

1770 Vl(\{ + 1) - (y - 1) and the equation of state), '

—
or
Z+(1—V1)(Y—1) .

Py =Py 2- (T -V +1D)

Eliminating S from equations (II.1) and (II.2) gives
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and substituting in equation (II.3), we get

> (Y+1)pOUZ 1 PoY . 14
<1'V1)+—27{170_('V1)'?ﬁ>‘0—“- (I1.4)

Replacing {1l - Vl) by U/S from equation (II.2) we get

2_y*1l yg. 9 . (11.5)

This equation gives the shock speed S when the piston velocity and the
state ahead of the shock are known. The roots of the equation are always
real, one positive and the other negative corresponding to whether the gas is
to the left or right of the piston that is compressing it.

The positive part of equation (II.5) is

' 2 vP
SZ%J‘UJ’\/(YZI) u®+ 2. (I1.6)
Po

The speed of sound ahead of the shock is CO = }yPo/pO. Hence

2
S:E_LU«{.'\/(X_-’___I)UZ.;.C Z.

4 4 0

The shock speed S increases with U. When U is zero S'= Coo For

large U, where CO/U is negligible, § = -—5—U.
From equation (II.1) we have S = T Replacing S by this value
0

in equation (II.5} we get an expression for the pressure Pl.

2 y+1 2 2 _
(pl . po) -3, UBp, - P - vpgPeU” = 0. (I1.7)

Solving equation (II.7) for the positive root gives

2
2
P1=PO+YZIpOUZ+pOU\/(YZI)UZ+CO. (1L.8)

When U is large enough that CO/U is negligible,

. _ [y t1 2
Py - Py < z.)PoU'
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The relative volume Vl behind the shock is obtained by eliminating S

from equations (II.2) and (II.6).

V. =1 - : (I1.9)

=y-1
V1 v+1°

which is the minimum relative volume that a single shock can produce.

2. QGraphical Representation

To get a clearer view of these relations we shall represent the

Hugoniot and adiabat graphically. Taking as coordinates Pl/PO and Vl

(remembering that V. is the relative volume behind the shock where the

1
relative volume ahead of the shock is 1) and using equations (II.3) for the

Hugoniot we get the curves shown in Fig. 4.

P (y+1)-V. (y -1)
Hugoniot L. L
P, V,0FD-&-D

|
|
|
|
|
|
|
I
|
| p1 )
' Adiabat = =V, Y
| 0 1
|
I R
=
0 |Jet .
| A
1 | -
v, ' yur-16710 -

Fig. 4. Hugoniot and adiabat starting from same point.
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The Hugoniot starting from point A has the asymptote ;{ ; i while the

adiabat has the ordinate as an asymptote. By differentiating the Hugoniot and

the adiabat two times with respect to Vl’ we get

d(Pl/PO) ) d(Pl/PO) -
—av | A Y
L A (Hugoniot) A (adiabat)
a“(p,/P,) a®p./p |

1770 _ 1770 _ '
- = | - = yly + 1),
- dV1 A (Hugoniot) dVl A (adiabat)

which shows that the Hugoniot and adiabat have at point A the same tangent

and curvature, as was pointed out in section I.

3. Reflection of a Uniform Shock

In the preceding analysis we have considered the column of gas to be
infinite in length. Now, we shall suppose that it is terminated by a ''stone
wall' where the velocity is always zero.

When the shock S from the piston, equation (II.6), reaches the stone
wall a reflection is produced. That is, a new shock S1 is formed which
travels back toward the piston and changes the gas velocity from U1 to that
of the stone wall or zero. This shock reaches the piston and a new shock
SZ’ analogous to S, is formed, etc.

We wish to find the values of Pn and Vn behind a shock S, where for
odd n the shock is traveling from the piston toward the stone wall and for
even n the shock is traveling from the stone wall toward the piston.

s = On ~ a1V (I.10)

n Vv -V !
n-1 n

Pn - Pn-l = Pn-1"n

s (U_-U__)). (II.11)

n

[Note that equations (II.10) and (II.11) are generalized versions of equations

(I.1) and (I.2), respectively.] The quantity (Un - Un-l) alternates from (+)

the piston velocity to (-) the piston velocity U. For a shock process,

P >P ,
n n-1

S from equations (II.10) and (II.11) and taking account of the fact that

so S changes sign corresponding to its direction. Eliminating

Pl = Po/ Vo We get
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2
POU
Vn= Vn-l TP _-P ’ (1. 12)
n n-1
v+ 1 2 v+ 1 2 2 2
Pn=Pn_1+—Z— pn—lU +pn_lU < 7 )U +Cn—l . (I1.13)

[Equation (II.13) is derived from equation (IL.8).]

The solution of the problem is complete since all the quantities of index

n can be gotten from the quantities of index n - 1.

4. Application

We wish to apply equations (II.12) and (II.13) to get the conditions behind
the first reflected shock from the stone wall. Considering the initial state of
the gas to be VO =1, PO = 0, and density P’ we get from equations (I1.12)
and (II.13) the state behind the incoming shock:

= y-1
Vl—y T

Substituting these values back in equations (II.12) and (I1.13), we get the
state behind the shock reflected from the wall:

_ {3y -1
PZ (y-l)Pl’

=y-1
V2 Y Vl’

!

III. GRAPHICAL METHODS OF SOLUTION

Problem 1

A plate Py originally traveling to the right with velocity UO strikes a

target which is at rest (see Fig. 5). After collision, the velocity UO of the

plate is U,. A shock S3 is transmitted to the right into the target and a

3
shock S2 is transmitted to the left into the plate. The shock S3 changes the
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P Target R
0 ! 6
Velocity=U, Stationary

Interface Velocity=Uz

/

Reflected Shock Wave(S,)

TTronsmiHed Shock Wave (S3)

Reflected Shock Wave (S,)

N
Impact

Interface Velocity =Ug
~<<[ransmitted Shock Wave(Sg)

Target P2

© P <0, 0,0,V =

@FT=O,EI=O,,1|),VI=I,U‘=O | 3

®2’E2’@’V2:’%/@ b

OERY- WX

@ 5'54’3"’4:’? /'91

O AT

(&P =0,E-0,0,v=1,U=0 Target R w61
Fig. 5. Plate P| traveling to the right at velocity U

strik:>s stationary
plate and target as shown.

interface with second plate,
and reflected shocks S

]target, creating shocks S, and S, in
Shock S, in target travéls to
P, ang creates transmitted

5 and S4, respectively.
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target material from state Pl’ El’ Py to state P3, E3, P3- Similarly the

shock S2 into the plate changes the plate material from state PO, EO’ Po to

and P_, will be equal.

The pressures at the interface, P‘2 3

state PZ’ EZ’ Py

[See equations (III.1).]

Equations (IIL.1)

For the plate P1 For the target

From Hugoniot mass and momentum conservation equations:

po(U3 - Uo)2 = (P, - Pl - V) Pl(U:s - Ul)z =(Py - PV, - V3)

Equation of state:

P (V,, E,) P, =P (V,, E;)

2" Pplate 3 target

Third Hugoniot equation:

P, + P, P, + P,
E,-Ey= > (Vo = V) Ey-Ey = 5 (V) - V3)

The third Hugoniot equation can be used to eliminate E from the
equation of state to give the ""Hugoniot equation' for the material where P is
a function of V alone. In this problem we will consider the pressure and
energy for the plate and target to be zero before the collision.

Rewriting the equations (III.1) with Hugoniots for the equations of state

we have:
Equations (III.2)
For the plate For the target
(U—U)Z—P(V v.) (U=—U 2PV, - V,)
Po\™3 o/ ~ 20" Y2 P1\"3 1)“21"3
PZ - leate(vz) PS - Htarget(v3)
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We are given the conditions before the collision: UO’ VO’ and Po for
the plate, and Ul’ Vl’
four unknowns — PZ’ VZ’ V3, and U3 — and we have four equations. The four
equations are not readily solved algebraically, so a graphical method will

and for the target. Since P, = P, there are
P1 g 2 3

be used. Curves of P vs AU are made for each material by assigning values
to V, and Vs
change in velocity AU. These curves(Fig. 6)thenrepresent all of the possible

respectively, in the equations (III.2) and calculating the resulting

pressure-velocity states each material could have as a result of a strong
shock starting from an initial state P = 0 and E = 0. |

The change in velocity, AU, may be positive or negative: the sign is
negative if the material is slowed down from a given velocity by hitting an
object and the sign is positive if the material is speeded up by an object
hitting it. The problem of a graphical solution of a plate hitting a target is to
get the two P-vs-AU curves into the same coordinate system.

If we consider the coordinate frame of the target where in this case
U, =0 and U, is an increasing velocity to the right, then in this frame the

1 3
plate has P = 0 when U, = U, and the pressure will increase as U3 decreases

from this point. Hence 3t‘the sglution to the problem is obtained by super-
imposing the curves as shown in Fig. 7.

The volumes VZ and V3 are found by substituting the values of P and
U3 at the intersection of the two curves into equations (III.2).

In practice the Hugoniot curves for various materials are made up in
advance in the form of P-vs-AU curves where the initial state is considered
tobe U=0, P=0, V=1, and E = 0. Then the left side of the P-vs-AU
curve is obtained by !'flipping'' the curve about the ordinate as was done above.

From Fig. 7 it can be seen that if the target and plate were of the same

material, the value of U, at the interface would be 1/2 the incoming velocity

3
UO' If the target material were infinitely stiff as a '"stone wall," where
U3 = 0 for all P, the pressure at collision would be the value of P for the

incoming velocity U,. If the material were infinitely soft or a 'void,' with

0
P =0 for all U3, then pressure at collision would be zero and U3 would
remain equal to UO.
Problem 2

Consider a second plate to be at rest to the right of the target in problem

1 (see Fig. 5). The shock S3 traveling through the target meets the second
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=]

? Target

» AU - — AU
(U3-UO)<O (U3—UO)>O (U3-U|)<O (U3—U|)>o_
MUL~-16712

-t

Fig. 6. Curves of P vs AU for plate and target.

Plate Target

’.— At Interface

- |}

U3= U
MUL-16713

Fig. 7. Superimposing plate and target curves from
Fig. 6 to solve for P and U at interface.
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plate, PZ’ and transmits a shock S5 into it, changing the state of material
from subscript 6 to subscript 5 as shown. The reflected signal S4 transmitted
into the target may be a shock or a rarefaction; however, the signal in the
plate will always be a shock. The velocity at the interface is U4, and again
the pressures at the interface, P4 and P5, are equal.

First we shall assume S4 to be a shock. Writing the Hugoniot equations

as before, we have equations (III.3)

Equations (III.3)

For the target For plate 2

2 2
pl(U4—U3) = (P, - PV, - V,) p6<U4-U6) = (P, - PV, - V)

P4 = Htarget(v4) P5 - leate Z(VS)

We are given the conditions just as the shock reaches the interface:

U3, V3, and Py for the target, and Ué’ V6’ and P for plate 2. Since
P4 = P5, again there are four unknowns — P4, V4, V5, and U4 — and four

equations. The equations are solved graphically as before, except here the
Hugoniot equation for the target is not the same since it is the locus of
pressure-volume points starting for E3 # 0 and P3 # 0. It is obtained in the

same manner by substituting the third Hugoniot equation into the equation of

P4 + P3
state |i.e., substitute E4 - E3 =\—— (V3 - V4) in the equation of state

P = Ptarget(v4’ E4) so as to eliminate E4

the Hugoniot from E =0, P=0, V =1 as shown schematically in Fig. 8.

This Hugoniot compares with

The target Hugoniot starting from V3 and P3 and the plate Hugoniot are used
to construct P-vs-AU curves by using equations (III.3) in the same way as
was done before.

The graphical solution consists of getting the target P-vs-AU curve
into the coordinate frame of the plate as shown in Fig. 9.

The volumes V4 and V5 are found by substituting the values of P4 and

U4 at the intersection of the two curves in the equations (IIL.3).
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target and plate 2.

~-16-

Hugoniot from V=V3,E=E3,P=|:;

Hugoniot from V=1,E=0,P=0
(principal Hugoniot)

\Y) [ MUL-16714

Fig. 8. Hugoniot from point (V3, P3) on principal
Hugoniot.

+ AN Plate 2 at /

N Interface
Tcrgef\,;\

»0

- U,

U4= U3 MUL-16T715

Fig. 9. Graphical solution for P and U at interface of
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For most solid metals the energy dependence in the equations of state
is small so that over limited ranges the Hugoniot starting from V3, P3, E3
in Fig. 8 turns out to be very close to the principal Hugoniot. Also, over
limited ranges the adiabat expanding from a point on the Hugoniot will lie
close to the Hugoniot. These facts greatly simplify and increase the range
of problems that can be solved in this manner. (See Appendix for an analysis
on a typical equation of state for a metal.)

Because of the small energy dependence it will not be necessary in
problem 2 to construct the P-vs-AU curve starting with the conditions
V = V3, P = P3, E = E3, and U = U3; instead we may use the P-vs-AU curve
that was obtained from the state P=0, E=0, V=1, and V = 0. We still
have the problem of getting into the right coordinate frame.

We want to match the velocities so that the target is moving at velocity
U, in the coordinate frame of the plate. This is accomplished by flipping the

3

target P-vs-U curve about U, as shown in Fig. 10.

3

Target after Plate 2
flipping

/‘,Target before flipping
/

At inte rfa,eé

X A~ ~7 > Y4

8] U MUL-16716

Fig. 10. Graphical solution for P and U at interface, using the principal
Hugoniots for plate and target.
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From Fig. 10 we see that the target pressure increased from P3 to P4,
indicating a shock. If plate 2 had been the same material as the target the
P-vs-AU curve would have been the same as the target curve before flipping
and no change in pressures would have occurred at the interface. If the plate
2 curve had intersected the target curve to the right of P3 the pressure would
have dropped in the target, indicating a rarefaction. If plate 2 had been a
void (P = 0 for all U) the pressure P3 would have gone to zero and the
velocity from U3 to 2U.,. Thus the front surface velocity is equal to twice

3
the particle velocity for a shock traversing the material and reaching a free

surface.

In equation-of-state measurements the free surface velocity is meas-
ured for an unknown material. From this the particle velocity is known, and
if the shock transit time is measured the pressure can be obtained by the
Hugoniot relation P = pOUS. The other Hugoniot relations give the volume
and energy. A series of P, V, E points can be obtained in this way by
repeating the experiment with various input velocities. These points do not
allow one to immediately write the pressure, volume, energy relations or
the surface that represents all the states of the material since we only have
the experimental points of a line on this surface. To write the equation of
state, assumptions are made concerning the energy dependence anda P, V,

E relation is written satisfying the experimental Hugoniot points.

Problem 3

Consider a length of high explosive (H.E.) thathasbeen detonated, where
the detonation front has just reached the surface of an adjoining plate at rest.
A shock S1 is transmitted into the plate. The problem is to find the pressure,
density, and internal energy behind the shock. (See Fig. 11.)

The three conservation laws must still hold. The problem is similar
to problem 2, but here the detonation front replaces the shock S3. The
Hugoniot curve for the H. E.is constructed starting from the conditions at the
detonation front, called the Chapman-Jouguet point (C-J), and the H.E. equa-
tion of state, all considered to be known in advance. The procedure is
identical to problem 2, with the subscript 3 being replaced by the values at

the C-J point. The P-vs-U curves for both materials are superimposed in

Fig. 12 (just as was done in Fig. 9), and the intersection gives the values of
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-Detonation

front ~_

MUL-16717

UCRL-6797

Fig. 11. Detonation front in high explosive (H.E.) just
as it reaches surface of adjoining plate.

~ MUL-16718

1

Fig.. 12.  Graphical:solution to find P and U at the

interface between H. E.

and plate of Fig. 11.
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ac\ 2 ¢ ac\ 3 ¢ ) ac 8 c &

(A.2a) .

The underlined terms in equation (A.22) are the same as the principal
Hugoniot. Since —%— ~ and c is usually between 1 and 2, equation (A.2a)

is very nearly equal to the principal Hugoniot except for high order terms.

APPENDIX B

To show that the front surface velocity equals twice the particle velocity

(Ufs‘ = 2U_) for a material with a Hooke's law equations of state,

P =a(p/py - 1)

2 _ 8P a
C = "a—“ - ee——
P Po
where
a = constant,
Pg = reference density,

t

c = sound speed.

The Riemann invariant, o, for the hydrodynamic equations of motion is

r
o= \ C—d‘}B. (See R. Courant and K. O. Fredricks, Supersonic Flow and Shock

«

Waves, Interscience, New York, 1948.)

Since c is a constant for this equation of state we have

U=c§§£=cln—& = c ln n,
P po o

where n = p/po-
For a shock traveling through undisturbed material we have

2
pOUp = P(l - V).
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We want to find the front surface velocity when the shock reaches it.

Taking the +c characteristics we have

Up +0'p= Ufs +0—fs

at the front surface ¢ = 0. Hence

U, =U_+o¢_.
fs P P
Substituting the equation of state into the relation pOUpz = P(l - V),
we get
2 1
U " =a(n- 1)1l - =
PoUp =2l )( n)
n- )% 1
-2 -1 , where n=go =-£,
Po n v Po
U =chz 1,
p N
c=U __.'\/j.__,
pn- 1
i - Nm
0"p~C1n‘n—Up—n—:—-l lnr|
= U _, since 1_;\J/__—iln'qzl
From U, =U_+o0_,
fs
Ugg = ZUp

In the above derivation the equation of state was assumed to be linear

in m. A more critical analysis, using a nonlinear equation of state, will show ...

the preceding result is valid over a large range of pressure and compression.
Consequently the assumption of using the principal Hugoniot in solving shock

interaction problems is reasonable.




This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission™ includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.




